Crossbar-Based Memristive Logic-in-Memory Architecture
نویسندگان
چکیده
منابع مشابه
2T1M-Based Double Memristive Crossbar Architecture for In-Memory Computing
The recent discovery of the memristor has renewed the interest for fast arithmetic operations via high-radix numeric systems. In this direction, a conceptual solution for high-radix memristive arithmetic logic units (ALUs) was recently published. The latter combines CMOS circuitry for data processing and a reconfigurable “segmented” crossbar memory block. In this paper we build upon such a conc...
متن کاملArchitecting Low Power Crossbar-Based Memristive RAM
Crossbar-based memristive arrays are promising candidates for future high-density, low-power memories. Their structural simplicity allows them to be fabricated with pitches as small as 17 nm [6] and with projected reductions, according to the ITRS, to a few nanometers in the next decade [1]. A crossbar is particularly useful if two-terminal switching nano-devices with a nonlinear behavior are p...
متن کاملHigh-density crossbar arrays based on a Si memristive system.
We demonstrate large-scale (1 kb) high-density crossbar arrays using a Si-based memristive system. A two-terminal hysteretic resistive switch (memristive device) is formed at each crosspoint of the array and can be addressed with high yield and ON/OFF ratio. The crossbar array can be implemented as either a resistive random-access-memory (RRAM) or a write-once type memory depending on the devic...
متن کاملLogic operations in memory using a memristive Akers array
In-memory computation is one of the most promising features of memristive memory arrays. In this paper, we propose an array architecture that supports in-memory computation based on a logic array first proposed in 1972 by Sheldon Akers. The Akers logic array satisfies this objective since this array can realize any Boolean function, including bit sorting. We present a hardware version of a modi...
متن کاملReconfigurable computing crossbar architecture based on memFETs
New reconfigurable computing crossbar architecture based on memFETs has been developed and patented. This breakthrough technology, developed by a group of scientist from UAB and UPC represents an alternative to conventional computational systems as it adapts the size and composition dynamically, without any changes in CMOS manufacturing process required. Partners to further develop the system a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Nanotechnology
سال: 2017
ISSN: 1536-125X,1941-0085
DOI: 10.1109/tnano.2017.2691713